

Ecoflex 15 Plus HEATEX (*)

Stranded center conductor with aluminium core and weldet copper shield

Combines excellent HF characteristics with all fire protection requirements

- Very low longitudinal attenuation
- High flexibility
-) Halogen-free
- Complies with all relevant fire protection demands

The new **Ecoflex15 Plus-Heatex** comes with an innovative cable design which again improves the good HF characteristics of the ECOFLEX 15 – standard cable.

Ecoflex 15 Plus-Heatex uses a high precision Hybrid inner conductor, made of seven single aluminium core wires with welded OFC copper coat. The surface finish and the corresponding HF characteristics of this inner conductor are significantly better than conventional stranded copper wire. The result is impressive:

- Significantly lower longitudinal attenuation: – 11% at 6 GHz
-) Lower cable weight: 22%
- Usable frequency range extended to 8 GHz
-) Excellent flexibility

A further plus is the double shielding: an overlapping copper foil and an overlying copper braid guarantee a high shielding factor of $>90 \, dB@1 \, GHz$.

Ecoflex 15 Plus-HEATEX is predestined for operation in buildings, ships and applications in fire-endangered areas. The UV stabilisation of the robust HEATEX coats also allows an unlimited outdoor use.

Ecoflex 15 Plus-Heatex is hardly inflammable and offers a low fire propagation.

Heatex coats are halogen-free, low-smoke and include no reaction-friendly elements like fluorine, chlorine and bromine. In comparison, standard coaxial cables with PVC coats (polyvinyl chloride) are not halogen-free and hence must not be used in fire-hazardeous areas. A critical point of PVC cables is their propagation of flames in case of fire – a danger that is safely eliminated by **Ecoflex 15 Plus-Heatex!**

Available standard lengths 25 m, 50 m, 100 m, 200 m, 500 m. Ecoflex 15 Plus-Heatex complies with the following norms:

(Further information regarding tests at www.ssb.de)

Fire behaviour EN 50265-2-1 IEC 60332-1 DIN 5510-2

Cable bundle test IEC 60332-3-24

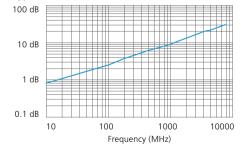
Smoke density

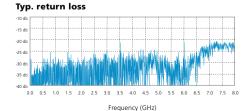
IEC 61034 -1+2EN 50268

Corrosiveness of combustible Gases

HD 602-1 EN 50267-2-3 IEC 60754-2

Technical data
Centre conductorHybrid, aluminium core,
copper shield, 7 x 1.55 mm
Centre conductor Ø4.5 mm
Dielectric PE, low-loss compound
Dielectric Ø11.3 mm
Outer conductor 1 copper foil, PE coated
Shielding factor
Outer conductor 2 copper braid
Shielding factor
Sheath black heatex, UV-resistant
Outer diameter Ø14.6 mm
Weight
Min. bending radiusone single bending70 mm
15 repeated bendings 140 mm
Temperature rangestorage70 bis +85°C
installation40 bis +60°C
operation55 bis +85°C
Pulling strength10 daN


Electrical specifications
Impedance
Capacity 77 pF/m
Velocity factor0.86
fmax
Screening efficiency @ 1 GHz > 90 dB
DC-resistance: Centre conductor
Outer conductor 5.15 Ω /km
RF peak voltage


Ecoflex 15 Pl	us Heatex	RG 213/U	RG 58/U
Capacity	.77 pF/m	. 101 pF/m	.102 pF/m
Velocity factor	0.86	0.66	0.66
Attenuation (dB/100 m	1)		
10 MHz	0.83	2.0	5.0
100 MHz	2.67	7.0	17.0
500 MHz	6.2	17.0	39.0
1000 MHz	9.1	22.5	54.6
3000 MHz	16.9	58.5	118

Typ. attenuation	(dR/100 m @	2000	٠,	
iyp. attenuation	(ub) 100 III w	, 20 C	./	
5 MHz	0.58	1000	MHz	9.1
10 MHz	0.83	1296	MHz	10.5
50 MHz	1.87	1500	MHz	11.4
100 MHz	2.67	1800	MHz	12.6
144 MHz	3.23	2000	MHz	13.4
200 MHz	3.83	2400	MHz	14.9
300 MHz	4.75	3000	MHz	16.9
432 MHz	. 5.8	4000	MHz	20.0
500 MHz	. 6.2	5000	MHz	22.9
800 MHz	.8.0	6000	MHz	25.6
		8000	MHz	30.5

Max. power handling (W @ 40°C)						
10 MHz6710	2000 MHz410					
100 MHz2070	3000 MHz330					
500 MHz890	4000 MHz280					
1000 MHz610	6000 MHz220					
	8000 MHz180					

Typ. attenuation (dB/100 m) @ 20°C

Due to production tolerances the return loss may have different characteristics.