

Catalog | January 2018
AFS contactors for safety applications

AFS contactors for safety applications

Overview 3
Ordering details
4 to 18.5 kW
AFS09 ... AFS38 AC / DC operated with 2 N.O. +2 N.C. 6
18.5 to 45 kW
AFS40 ... AFS96 AC / DC operated with 2 N.O. +2 N.C.
AFS40 ... AFS96 AC / DC operated with 2 N.O. +2 N.C. 7 7 8
AFS09 ... AFS96 Main accessories
AFS09 ... AFS96 Main accessories
Technical data 10
Terminal marking and positioning 15
Electrical durability 16

AFS 3-pole contactors with front-mounted auxiliary contacts Dedicated for safety applications

ABB's complete range of safety components make protection systems easier to build. Designed for machine safety applications, AFS contactors come with fixed front auxiliary contact blocks, making them ideal for monitoring and controlling circuits. Mechanically linked and mirror contacts help make your system safer.

Continuous operation

Secure uptime

The AFS contactor secures system uptime. It allows direct control by safety PLCs or safety relays to ensure the safety performance customers require, for contactors up to 38 A . A low energy auxiliary contact guarantees PLC feedback.

Speed up your projects

Simplify design

Perfect design makes integration easier. ABB's distinctive yellow auxiliary contact block makes identifying the right product quicker.
By reducing the contactor coil's power consumption, panels can also be made smaller and transformers more compact. In addition, all the safety data for the contactors are readily available using safety design tools.

AFS contactors with front-mounted auxiliary contact blocks Dedicated for safety applications

Contactors status guaranteed

ABB's permanently fixed front-mounted auxiliary contact blocks guarantee the correct contactor status at all times.
Mechanically linked and mirror contacts get clearly marked symbols on the front and provide the performance required in feedback circuits. This prevents any unexpected state changes of auxiliary contact if main contacts become welded or stuck and ensures an accurate depiction of the safety system status displayed at all times.

Prevent unexpected operations
Front-mounted contact blocks are permanently fixed to protect devices against accidental misuse and operation. A factoryfitted transparent cover shields the contactor status indicator, providing additional protection.

Easy safety chain identification
The yellow housing of ABB's AFS contactors makes identifying the safety product in your panel quicker. During routine maintenance work, ABB's intuitive design saves valuable time.

Simplify calculation of your installation safety level All safety values are available in safety design tool such as Sistema and FSDT, dedicated software for determining the Performance Level (PL) and Safety Integrity Level (SIL) of safety functions and generating technical documentations.

Control by safety PLCs or safety relays

ABB's AFS contactors can be controlled directly by safety PLCs or safety relays. The low energy auxiliary contacts feature a minimum switching capacity $12 \mathrm{~V} / 3 \mathrm{~mA}$. They guarantee system status feedback, making the system safe and reliable.

Panel size reduction

By reducing coil energy consumption by up to 60%, panels can be built smaller and transformers can be downsized. With reduced power dissipation in the cabinet, installations also need fewer fans. Using AFS contactors saves money and precious space.

Fast response for increased safety
With fast opening times less than 30 ms for selected variants, AFS09 ... AFS38 respond quickly when a dangerous failure is detected. Safety is enhanced and the safety distances of installations can be significantly shorter.

Built-in surge suppression
Unlike conventional contactors, ABB's AFS contactors have built-in surge suppression, preventing surges from ever reaching the control circuit. With no need for the usual external surge suppressor add-ons, ABB's solution means one less device to install and one less complication to manage.

AFS09 ... AFS38 3-pole contactors for safety application 4 to 18.5 kW
 AC / DC operated with 2 N.O. + 2 N.C. auxiliary contacts

AFS16-30-22

AFS38-30-22

Description

AFS09 ... AFS38 contactors are designed for machine safety applications. They are delivered with fixed front-mounted auxiliary contact blocks making them ideal for monitoring and controlling circuits.
Mechanically linked and mirror contacts make your system safer.

- control circuit with electronic coil interface:
- dedicated 24 V DC for direct control by PLC-output $\geq 250 \mathrm{~mA}$, low holding consumption up to 1.7 W - 24... 60 V AC, 20... 60 V DC and 100... 250 V AC / DC operated accepting a wide control voltage range - reduced panel energy consumption
- mirror and mechanically linked contacts, with front marked symbol acc. to IEC60947-5-1, always guaranteeing the right contactor status
- front-mounted auxiliary contact block:
- permanently fixed
- protective cover to prevent manual operation
- yellow housing for easy identification
- minimum switching capacity $12 \mathrm{~V} / 3 \mathrm{~mA}$, with a failure rate 10^{-7} acc. to IEC 60947-5-4
- built-in surge suppression

Ordering details

		UL/CSA		Rated control circuit voltage Uc min. ... Uc max.		Auxiliary	Type (1)	Order code	Weight Pkg (1 pce)
Rated o power	perational current $\theta \leq 40^{\circ} \mathrm{C}$	3-phase motor rating 480 V hp	General use rating 600 V ACA			contacts fitted			
400 V									
AW-3	$\begin{aligned} & \text { AC-1 } \\ & \text { A } \end{aligned}$			V 50/60 Hz	VDC	14			kg
4	25	5	25	-	24	22	AFS09Z-30-22-30	1SBL136082R3022	0.49
				$24 . . .60$	$20 \ldots 60$ (1)	22	AFSO9-30-22-11	1SBL137082R1122	0.32
				$100 . .250$	$100 \ldots 250$	22	AFSO9-30-22-13	1SBL137082R1322	0.32
5.5	28	7-1/2	28	-	24	22	AFS12Z-30-22-30	1SBL156082R3022	0.49
				$24 . .60$	$20 . .60$ (1)	22	AFS12-30-22-11	1SBL157082R1122	0.32
				$100 . .250$	$100 \ldots 250$	22	AFS12-30-22-13	1SBL157082R1322	0.32
7.5	30	10	30	-	24	22	AFS16Z-30-22-30	1SBL176082R3022	0.49
				$24 \ldots 60$	$20 \ldots 60$ (1)	22	AFS16-30-22-11	1SBL177082R1122	0.32
				$100 \ldots 250$	$100 \ldots 250$	22	AFS16-30-22-13	1SBL177082R1322	0.32
11	45	15	45	-	24	22	AFS26Z-30-22-30	1SBL236082R3022	0.54
				$24 . .60$	$20 \ldots 60$ (1)	22	AFS26-30-22-11	1SBL237082R1122	0.36
				$100 \ldots 250$	$100 \ldots 250$	22	AFS26-30-22-13	1SBL237082R1322	0.36
15	50	20	50	- - -	24	22	AFS30Z-30-22-30	1SBL276082R3022	0.54
				$24 . .60$	20... 60	22	AFS30-30-22-11	1SBL277082R1122	0.36
				$100 \ldots 250$	$100 \ldots 250$ (1)	22	AFS30-30-22-13	1SBL277082R1322	0.36
18.5	50	25	50	-	24	22	AFS38Z-30-22-30	1SBL296082R3022	0.54
				$24 . .60$	$20 . . .60$ (1)	22	AFS38-30-22-11	1SBL297082R1122	0.36
				$100 . . .250$	100 ... 250	22	AFS38-30-22-13	1SBL297082R1322	0.36

(1) AFS..-30-..-11 for control by transistor outputs of safety PLCs and safety relays use interface relay RA4 1SBN060100R1000.

Main dimensions mm, inches

AFS40 ... AFS96 3-pole contactors for safety application 18.5 to 45 kW
 AC / DC operated with 2 N.O. + 2 N.C. auxiliary contacts

AFS65-30-22

AFS96-30-22

Description

AFS40 ... AFS96 contactors are designed for machine safety applications. They are delivered with fixed frontmounted auxiliary contact blocks making them ideal for monitoring and controlling circuits. Mechanically linked and mirror contacts make your system safer.

- control circuit with electronic coil interface:
- 24... $60 \vee \mathrm{VC}, 20 \ldots 60 \mathrm{~V}$ DC and $100 \ldots 250 \mathrm{~V}$ AC / DC operated accepting a wide control voltage range
- reduced panel energy consumption
- mirror and mechanically linked contacts, with front marked symbol acc. to IEC60947-5-1, always guaranteeing the right contactor status
- front-mounted auxiliary contact block:
- permanently fixed
- protective cover to prevent manual operation
- yellow housing for easy identification
- minimum switching capacity $12 \mathrm{~V} / 3 \mathrm{~mA}$, with a failure rate 10^{-7} acc. to IEC 60947-5-4
- built-in surge suppression

Ordering details

IEC		UL/CSA				Auxiliary contacts fitted	Type (1)	Order code	Weight Pkg (1 pce)
Rated operational		$\begin{aligned} & \text { 3-phase } \\ & \text { motor } \\ & \text { rating } \\ & 480 \mathrm{~V} \end{aligned}$	General use rating 600 V AC						
power	current $\theta \leq 40^{\circ} \mathrm{C}$								
400 V				Rated control circuit voltage Uc min. ... Uc max.					
AC-3	AC-1					14			
kW	A	hp	A	V 50/60 Hz	V DC				kg
18.5 kW	70 A	30	60 A	$24 . .60$	$20 \ldots 60$ (1)	22	AFS40-30-22-11	1SBL347082R1122	1.02
				$100 \ldots 250$	100 ... 250	22	AFS40-30-22-13	1SBL347082R1322	11
22 kW	100 A	40	80 A	$24 . .60$	20...60 (1)	22	AFS52-30-22-11	1SBL367082R1122	1.02
				$100 \ldots 250$	$100 . . .250$	22	AFS52-30-22-13	1SBL367082R1322	11
30 kW	105 A	50	90 A	$24 . .60$	$20 \ldots 60$ (1)	22	AFS65-30-22-11	1SBL387082R1122	1.02
				$100 \ldots 250$	$100 \ldots 250$	22	AFS65-30-22-13	1SBL387082R1322	11
37 kW	125 A	60	105 A	$24 . .60$	$20 \ldots 60$ (1)	22	AFS80-30-22-11	1SBL397082R1122	1.27
				$100 \ldots 250$	$100 \ldots 250$	22	AFS80-30-22-13	1SBL397082R1322	1.22
45 kW	130 A	60	115 A	$24 . .60$	$20 \ldots 60$ (1)	22	AFS96-30-22-11	1SBL407082R1122	1.27
				$100 . .250$	100... 250		AFS96-30-22-13	1SBL407082R1322	1.22

(1) AFS..-30-..-11 for control by transistor outputs of safety PLCs and safety relays use interface relay RA4 1SBN060100R1000.

Main dimensions mm, inches

AFS09 ... AFS96 3-pole contactors for safety applications Main accessories

Contactor and main accessories (other accessories available)

Main accessory fitting details
Many configurations of accessories are possible depending on whether these are front-mounted or side-mounted.

Overload relays fitting details (1)

Contactor types	Thermal overload relays	Electronic overload relays
AFS09 AFS38	TF42 (0.10... 38 A)	EF19 (0.10...19 A)
AFS26 ... AFS38	TF42 (0.10... 38 A)	EF45 (9... 45 A)
AFS40 ... AFS65	TF65 (22...67 A)	EF65 (20...70 A)
AFS80, AFS96	TF96 (40... 96 A)	EF96 (36... 100 A)

The addition of an overload relay on the contactor does not prevent fitting of many other accessories as shown above.
(1) Direct mounting - No kit required.

AFS09 ... AFS96 3-pole contactors for safety applications Main accessories

Ordering Details (1)
For contactors

Side-mounted instantaneous auxiliary contact blocks

AFS09 ... AFS96	11	-	-	CAL4-11	1SBNO10120R1011	1
	11	-	-	CAL4-11-T	1SBN010120T1011	10

Mechanical interlock unit				
AFS09 AFS38	VM4	1SBN030105T1000	10	0.005
AFS40 ... AFS96	VM96-4	1SBN033405T1000	10	0.006

Note: VM4 and VM96-4 include 2 fixing clips (BB4) to maintain together both contactors.

BER16-4

BEY16-4

For contactors	Time delay range selected by switch	Delay type	Auxiliary contacts 14	Type	Order code	Pkg qty	Weight (1 pce) kg
Connecting links with manual motor starters							
AFS09 ... AFS16	with M	$\begin{aligned} & \text { MS116-0.16 ... MS116-25, } \\ & \text { MS132-0.16 ... MS132-25 } \end{aligned}$		BEA16-4	1SBN081306T1000	10	0.025
AFS26 ... AFS38		MS116-0.16 ... MS116-16,MS132-0.16 ... MS132-10		BEA26-4	1SBN082306T1000	10	0.025
		MS116-20 ... MS 116-32, MS132-12 ... MS132-32		BEA38-4	1SBN082306T2000	10	0.030
AFS40 ... AFS65	with MS	MS165-16 ... MS165-65		BEA65-4	1SBN083406R1000	1	0.090
		MS165-16 ... MS165-65 (2)		BPR65-4	1SBN113405R1000	1	0.014
Connection sets for reversing contactors							
AFS09 ... AFS16				BER16-4	1SBN081311R1000	1	0.045
AFS26 ... AFS38				BER38-4	1SBN082311R1000	1	0.100
AFS40 AFS65				BER65-4	1SBN083411R1000	1	0.175
AFS80 ... AFS96				BER96-4	1SBN083911R1000	1	0.250
Connection sets for star-delta starting							
AFS09 ... AFS16	with or without VM4			BEY16-4	1SBN081313R2000	1	0.050
AFS26... AFS38	with or without VM4			BEY38-4	1SBN082713R2000	1	0.110
AFS40 ... AFS65	with or without VM96-4			BEY65-4	1SBN083413R2000	1	0.200
AFS80 ... AFS96	with or without VM96-4			BEY96-4	1SBN083913R2000	1	0.250

(1) For more information, refer to "Accessories" section.
(2) Use one BPR65-4 for each contactor AF540 ... AF565.

Connection sets for reversing contactors

AFS09 ... AFS96 3-pole contactors for safety application Technical data

Main pole - Utilization characteristics according to IEC

(1) For the corresponding kW/A or hp/A values of 1500 r.p.m, 50 Hz or 1800 r.p.m, $60 \mathrm{~Hz}, 3$-phase motors, see "Motor rated operational powers and currents".
(2) For the protection of motor starters against short circuits, see "Coordination with short-circuit protection devices".

AFS09 ... AFS96 3-pole contactors for safety application Technical data

Main pole - Utilization characteristics according to UL / NEMA / CSA

Contactor types	AC / DC operated	AFS09	AFS12	AFS16	AFS26	AFS30	AFS38	AFS40	AFS52	AFS65	AFS80	AFS96
Standards		UL 60947-4-1, CSA-C22.2 No. 60947-4-1										
Maximum operational voltage		600 V										
NEMA size		00	0	-	1	-	-	2	-	-	3	-
NEMA continuous amp rating	Thermal current	9 A	18 A	-	27 A	-	-	45 A	-	-	90 A	-
NEMA maximum horse power ratings 1-phase, 60 Hz	115 V AC	1/3 hp	1 hp	-	2 hp	-	-	3 hp	-	-	-	-
	230 V AC	1 hp	2 hp	-	3 hp	-	-	7.5 hp	-	-	-	-
NEMA maximum horse power ratings 3-phase, 60 Hz	200 V AC	1-1/2 hp	3 hp	-	7-1/2 hp	-	-	10 hp	-	-	25 hp	-
	230 V AC	$1-1 / 2 \mathrm{hp}$	3 hp	-	7-1/2 hp	-	-	15 hp	-	-	30 hp	-
	460 V AC	2 hp	5 hp	-	10 hp			25 hp	-		50 hp	-
	575 V AC	2 hp	5 hp	-	10 hp		-	25 hp	-		50 hp	-
UL / CSA general use rating 600 V AC		25 A	28 A	30 A	45 A	50 A	50 A	60 A	80 A	90 A	105 A	115 A
With conductor cross-sectional area		AWG 10	AWG 10	AWG 10	AWG 8	AWG 8	AWG 8	AWG 6	AWG 4		AWG 2	
1 pole	80 V DC	25 A	28 A	30 A	45 A	50 A	50 A	60 A	80 A	90 A	105 A	115 A
2 poles in serie	160 V DC	25 A	28 A	30 A	45 A	50 A	50 A	60 A	80 A	90 A	105 A	115 A
3 poles in serie	240 V DC	25 A	28 A	30 A	45 A	50 A	50 A	60 A	80 A	90 A	105 A	115 A
With conductor cross-sectional area		AWG 10	AWG 10	AWG 10	AWG 8	AWG 8	AWG 8					
UL / CSA maximum 1-phase motor rating Full load current	120 V AC	13.8 A	16 A	20 A	24 A	24 A	24 A	34 A	34 A	56 A	80 A	80 A
	240 V AC	10 A	12 A	17 A	17 A	28 A	28 A	40 A	50 A	68 A	68 A	88 A
Horse power rating	120 V AC	$3 / 4 \mathrm{hp}$	1 hp	$1-1 / 2 \mathrm{hp}$	2 hp	2 hp	2 hp	3 hp	3 hp	5 hp	7-1/2 hp	7-1/2 hp
	240 V AC	1-1/2 hp	2 hp	3 hp	3 hp	5 hp	5 hp	7-1/2 hp	10 hp	15 hp	15 hp	20 hp
UL / CSA maximum 3-phase motor rating Full load current (1)	200-208 V AC	7.8 A	11 A	17.5 A	25.3 A	32.2 A	32.2 A	32.2 A	48.3 A	62.1 A	78.2 A	92 A
	$220-240 \mathrm{~V} \mathrm{AC}$	6.8 A	9.6 A	15.2 A	22 A	28 A	28 A	42 A	54 A	68 A	80 A	80 A
	$440-480 \mathrm{~V} \mathrm{AC}$	7.6 A	11 A	14 A	21 A	27 A	34 A	40 A	52 A	65 A	77 A	77 A
	$550-600 \mathrm{~V} \mathrm{AC}$	9 A	11 A	17 A	22 A	27 A	32 A	41 A	52 A	62 A	77 A	77 A
Horse power rating (1)	$200-208 \mathrm{~V} \mathrm{AC}$	2 hp	3 hp	5 hp	7-1/2 hp	10 hp	10 hp	10 hp	15 hp	20 hp	25 hp	30 hp
	$220-240$ V AC	2 hp	3 hp	5 hp	7-1/2 hp	10 hp	10 hp	15 hp	20 hp	25 hp	30 hp	30 hp
	$440-480 \mathrm{~V} \mathrm{AC}$	5 hp	$7-1 / 2 \mathrm{hp}$	10 hp	15 hp	20 hp	25 hp	30 hp	40 hp	50 hp	60 hp	60 hp
	$550-600 \mathrm{~V} \mathrm{AC}$	7-1/2 hp	10 hp	15 hp	20 hp	25 hp	30 hp	40 hp	50 hp	60 hp	75 hp	75 hp
UL / CSA - DC motor starting - 3 poles in series		9.5 A	13.2 A	17 A	25 A	25 A	25 A	40 A	58 A	76 A	76 A	110 A
Full Load Amps	250 V DC	8.5 A	12.2 A	12.2 A	20 A	29 A	29 A	38 A	55 A	72 A	89 A	106 A
Horse power rating	125 V DC	1 hp	$1-1 / 2 \mathrm{hp}$	2 hp	3 hp	3 hp	3 hp	5 hp	7-1/2 hp	10 hp	10 hp	15 hp
	250 V DC	2 hp	3 hp	3 hp	5 hp	$7-1 / 2 \mathrm{hp}$	7-1/2 hp	10 hp	15 hp	20 hp	25 hp	30 hp
Short-circuit protection device for contactors without thermal overload relay - Motor protection excluded High fault current		100 kA										
Fuse rating		30 A		60 A		100 A		150 A			200 A	
Fuse type, 600 V												
Maximum electrical switching frequency For general use		600 cycles/h										
For motor use		1200 cycles/h										

(1) For the corresponding kW/A or hp/A values of 1500 r.p.m, 50 Hz or 1800 r.p.m, $60 \mathrm{~Hz}, 3$-phase motors, see "Motor rated operational powers and currents".

AFS09 ... AFS96 3-pole contactors for safety application Technical data

(1) AFS09 ... ASF38 $\leq 35 \mathrm{~ms}$ for $20^{\circ} \mathrm{C} \leq \theta \leq 70^{\circ} \mathrm{C}$

Mounting characteristics and conditions for use
Contactor types
Mounting positions

AFS09 ... AFS96 3-pole contactors for safety application Technical data

Contactor types AC / D	perated	AFS09	AFS12	AFS16	AFS26	AFS30	AFS38	AFS40	AFS52	AFS65	AFS80	AFS96
Main terminals			rminals	th cable	lamp			Screw terminals with double connector $2 \times(9.3$ width $\times 7.9 / 10.3$ depth)			Screw terminals with double connector $2 \times(12.4$ width x 9.3/11.1 depth)	
Connection capacity (min. ... max.)												
- Rigid Solid ($\leq 4 \mathrm{~mm}^{2}$)	1 x	1...6 6			2.5 ... 10	mm^{2}		6... 35			$6 \ldots 70$	
	2 x	$1 \ldots 6 \mathrm{~m}$			$2.5 \ldots 10$	mm^{2}		6 ... 35			$6 . .50$	
$\square \square$ Flexible with non insulated ferrule	1 x	0.75 ...	mm^{2}		1.5 .. 10	mm^{2}		$4 \ldots 35$			$6 . .50$	
$\square \square$	2 x	0.75 ...	mm^{2}		$1.5 \ldots 10$	mm^{2}		$4 \ldots 35$	m^{2}		6 ... 50	
$\square \square$ Flexible with insulated ferrule	1 x	0.75 ...	mm^{2}		$1.5 \ldots 10$	mm^{2}		$4 \ldots 35$			6 ... 50	
$\triangle 10$	2 x	0.75 $5 \mathrm{~mm}^{2}$		$1.5 \ldots 4$	mm^{2}		$4 \ldots 35$			$6 . .50$	
(1D $\int_{6]^{1}}$ Bars or lugs	L<	9.6 mm			12.5 mm			9.2 mm			12.2 mm	
Connection capacity acc. to UL/CSA	1 or 2 x	AWG 16	... 10		AWG 14	... 8		AWG 10	... 2		AWG 6	
Stripping length		10 mm			14 mm			16 mm			17 mm	
Tightening torque recommended		1.5 Nm	$13 \mathrm{lb} . \mathrm{in}$		2.5 Nm	22 lb .in		$4 \mathrm{Nm} /$	5 lb .in		$6 \mathrm{Nm} /$	3 lb .in
Auxiliary conductors (built-in auxiliary terminals + coil terminals)												
च】 Rigid solid	1 x	$1 . .2 .5 \mathrm{~mm}^{2}$										
\square	2 x	$1 \ldots 2.5 \mathrm{~mm}^{2}$										
\square Flexible with non insulated ferrule	1 x	$0.75 \ldots 2.5 \mathrm{~mm}^{2}$										
\square	2 x	$0.75 \ldots 2.5 \mathrm{~mm}^{2}$										
$\square \square$ Flexible with insulated ferrule	1 x	$0.75 \ldots 2.5 \mathrm{~mm}^{2}$										
\square	2 x	$0.75 \ldots 1.5 \mathrm{~mm}^{2}$										
	L<	8 mm										
Connection capacity acc. to UL/CSA	1 or $2 x$	AWG $18 . . .14$										
Stripping length		10 mm										
Tightening torque												
Coil terminals recommended	recommended	1.2 Nm / $11 \mathrm{lb} . \mathrm{in}$										
Built-in auxiliary terminals recommended		1.2 Nm/11 libin										
Degree of protection												
acc. to IEC 60947-1 / EN 60947-1 and IEC 60529 / EN 60529												
Main terminals		IP20						IP10				
Coil terminals		IP20										
Built-in auxiliary terminals		IP20										
Screw terminals		Delivered in open position, screws of unused terminals must be tightened										
Main terminals		M3.5			M4			M6			M8	
Screwdriver type		Flat Ø 5.5 / Pozidriv 2			Flat $\varnothing 6.5$ / Pozidriv 2						hexagon socket$(\mathrm{s}=4 \mathrm{~mm})$	
Coil terminals Screwdriver type		M3.5										
		Flat Ø 5.5 / Pozidriv 2										
Built-in auxiliary terminals \quad Screwdriver type		M3.5										
		Flat Ø 5.5 / Pozidriv 2										

AFS09 ... AFS96 3-pole contactors for safety applications Technical data

Contactor types	AC / DC operated	AFS09	AFS12	AFS16	AFS26	AFS30	AFS38	AFS40	AFS52	AFS65	AFS80	AFS96
Rated operational voltage Ue max.		690 V										
Rated frequency (without derating)		$50 / 60 \mathrm{~Hz}$										
Conventional free air thermal current Ith -	$40^{\circ} \mathrm{C}$	16 A										
le / Rated operational current AC-15												
acc. to IEC 60947-5-1	24-127 V 50/60 Hz	6 A										
	$220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	4 A										
	$400-440$ V 50/60 Hz	3 A										
	$500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	2 A										
	690 V $50 / 60 \mathrm{~Hz}$	2 A										
Making capacity AC-15		$10 \times$ le AC-15 acc. to IEC 60947-5-1										
Breaking capacity AC-15		$10 \times$ le AC-15 acc. to IEC 60947-5-1										
le / Rated operational current DC-13		$6 \mathrm{~A} / 144 \mathrm{~W}$										
acc. to IEC 60947-5-1	24 V DC											
	48 V DC	2.8 A / 134 W										
	72 V DC	$1 \mathrm{~A} / 72 \mathrm{~W}$										
	110 V DC	$0.55 \mathrm{~A} / 60 \mathrm{~W}$										
	125 V DC	$0.55 \mathrm{~A} / 69 \mathrm{~W}$										
	220 V DC	$0.27 \mathrm{~A} / 60 \mathrm{~W}$										
	250 V DC	$0.27 \mathrm{~A} / 68 \mathrm{~W}$										
	400 V DC	$0.15 \mathrm{~A} / 60 \mathrm{~W}$										
	500 V DC	$0.13 \mathrm{~A} / 65 \mathrm{~W}$										
	600 V DC	0.1 A / 60 W										
Short-circuit protection device gG type fuse		10 A										
Rated short-time withstand current Icw	for 1.0 s	100 A										
	for 0.1 s	140 A										
Minimum switching capacity with failure rate acc. to IEC 60947-5-4		$12 \mathrm{~V} / 3 \mathrm{~mA}$										
		10^{-7}										
Non-overlapping time between N.O. and N.C. contacts		$\geq 2 \mathrm{~ms}$										
Power dissipation per pole at 6 A		0.1 w										
Maximum electrical switching frequency	AC-15	$1200 \mathrm{cycles} / \mathrm{h}$										
	DC-13	900 cycles/h										
Mechanically linked contacts acc. to annex L of IEC 60947-5-1		Built-in N.O. or N.C. auxiliary contacts and additional N.O. or N.C. auxiliary contacts (CAL4 aux. contact blocks) are mechanically linked contacts.										
Mirror contacts acc. to annex F of IEC 60947-4-1		Built-in N.C. auxiliary contacts or additional N.C. auxiliary contacts (CAL4 aux. contact blocks) are mirror contacts.										

Built-in auxiliary contacts according to UL / CSA
Contactor types
Maximum operational voltage
Pilot duty
AC thermal rated current
AC maximum volt-ampere making
AC maximum volt-ampere breaking
DC thermal rated current
DC maximum volt-ampere making-breaking

AFS09 ... AFS96 3-pole contactors for safety applications Terminal marking and positioning

AFS09 ... AFS96 contactors - AC / DC operated
Standard devices

AFS09 ... AFS16..-30-22

AFS26 ... AFS96..-30-22

AFS09 ... AFS96..-30-22

3-pole contactors
 Electrical durability and utilization categories

General

Utilization categories determine the current making and breaking conditions relating to the characteristics of the loads to be controlled by the contactors. International standard IEC 60947-4-1 and European standard EN 60947-4-1 are the standards to be referred to.
If Ic is the current to be broken by the contactor and le the rated operational current normally drawn by the load, then:

- Categories AC-1 and AC-3: Ic = le
- Category AC-2: Ic $=2.5 \times \mathrm{le}$
- Category AC-4: Ic $=6 \times \mathrm{le}$

Generally speaking Ic $=\mathrm{m} \times$ le where m is a multiple of the load operational current.
On next pages, the curves corresponding to categories AC-1, AC-3 and AC-4 represent the electrical durability variation of standard contactors in relation to the breaking current Ic.
Electrical durability is expressed in millions of operating cycles.

Curve utilization mode
Electrical durability forecast and contactor selection for categories AC-1, AC-2, AC-3 or AC-4

- Note the characteristics of the load to be controlled:
- Operational voltage \qquad
- Current normally drawn le (Ue / le / kW relation for motors, see "Motor rated operational powers and currents").
- Utilization category AC-1, AC-2, AC-3 or AC-4
- Breaking current Ic $=$ le for AC-1 and for AC-3; lc $=2.5 \times$ le for AC-2 $;$ lc $=6 \times$ le for AC-4
- Define the number of operating cycles N required.
- On the diagram corresponding to the operational category, select the contactor with the curve immediately above the intersection point (Ic ; N).

Electrical durability forecast and contactor selection for mixed duty motor control: AC-3 (Ic = Ie) type switching off while "motor running" and, occasionally, AC-4 (Ic = $6 \times \mathrm{le}$) type switching off while "motor accelerating"

- Note the characteristics of the motor to be controlled:
- Operational voltage Ue
- Current normally drawn while "motor running" le (Ue / le / kW relation for motors, see "Motor rated operational powers and currents")
- Breaking current for AC-3 lc $=1 \mathrm{l}$
- Breaking current for AC-4 while "motor accelerating" Ic $=6 \times \mathrm{le}$
- Percentage of AC-4 operating cycles \qquad K (on the basis of the total number of operating cycles)
- Define the total number of operating cycles N required.
- Note the smallest contactor rating compatible for AC-3 ($\mathrm{Ue} / \mathrm{le}$) on Main pole utilization characteristic table (see "Technical data").
- For the selected contactor make a note of the following in relation to the voltage using diagram AC-3 in next pages:
- The number of operating cycles A for Ic = le (AC-3)
- The number of operating cycles B for lc $=6 \times \mathrm{le}$ (AC-4)
- Calculate the estimated number of cycles N^{\prime} (N^{\prime} is always below A)
$N^{\prime}=\frac{A}{1+0.01 \mathrm{~K}(\mathrm{~A} / \mathrm{B}-1)}$
- If N ' is too low in relation to the target N, calculate the estimated number of cycles for a higher contactor rating.

Case of uninterrupted duty

For uninterrupted duty, some verifications of preventing maintenance are necessary to check the functionality of the concerned product (consult us).
The combined effect of environmental conditions and the proper temperature of the product may require some disposals. As a matter of fact, for this duty, the use duration prevails over the number of operating cycles.

3-pole contactors

Electrical durability

Electrical durability for AC-1 utilization category - Ue $\leq 690 \mathrm{~V}$
Switching non-inductive or slightly inductive loads. The breaking current Ic for AC-1 is equal to the rated operational current of the load.
Ambient temperature and maximum electrical switching frequency: see "Technical data".

Example:

Ic / AC-1 = 26.5 A - Electrical durability required $=2$ millions operating cycles.
Using the AC-1 curves above select the AFS26 contactor at intersection "O" (26.5 A / 2 millions operating cycles).

3-pole contactors

 Electrical durabilityElectrical durability for AC-3 utilization category - Ue $\leq 440 \mathrm{~V}$.
Switching cage motors: starting and switching off running motors. The breaking current Ic for AC-3 is equal to the rated operational current le (le = motor full load current).
Ambient temperature and maximum electrical switching frequency: see "Technical data".

Example:

Motor power 30 kW for $\mathrm{AC}-3-\mathrm{Ue}=400 \mathrm{~V}$ and $\mathrm{Ie}=55 \mathrm{~A}$ utilization - Electrical durability required $=1.8$ million operating cycles. For AC-3: Ic = le. Select the AFS65 contactor at intersection "O" ($55 \mathrm{~A} / 1.8$ million operating cycles) on the curves (AC-3 - Ue $\leq 440 \mathrm{~V}$).

3-pole contactors

Electrical durability

Electrical durability for AC-3 utilization category - $440 \mathrm{~V}<\mathrm{Ue} \leq 690 \mathrm{~V}$.
Switching cage motors: starting and switching off running motors. The breaking current Ic for AC-3 is equal to the rated operational current le (le = motor full load current).
Ambient temperature and maximum electrical switching frequency: see "Technical data".

3-pole contactors

Electrical durability

Electrical durability for AC-2 or AC-4 utilization category - Ue $\leq 440 \mathrm{~V}$
Ambient temperature $\leq 60^{\circ} \mathrm{C}$ for AFS09 ... AFS96
Switching cage motors: starting, reverse operation and step-by-step operation. The breaking current Ic is equal to $2.5 \times$ le for AC-2 and $6 \times$ le for AC-4, keeping in mind that le is the motor rated operational current (le $=$ motor full-load current).
Maximum electrical switching frequency: see "Technical data".

3-pole contactors

Electrical durability

Electrical durability for AC-2 or AC-4 utilization category - $440 \mathrm{~V}<\mathrm{Ue} \leq 690 \mathrm{~V}$
Ambient temperature $\leq 60^{\circ} \mathrm{C}$ for AFS09 ... AFS96
Switching cage motors: starting, reverse operation and step-by-step operation. The breaking current Ic is equal to $2.5 \times$ le for AC-2 and $6 \times$ le for AC-4, keaping in mind tha le is the motor rated operational current (le $=$ motor full load current). Maximum electrical switching frequency: see "Technical data".

Contact us

ABB France

Electrification Products Division
Low Voltage Products and Systems
3, rue Jean Perrin
F-69687 Chassieu cedex / France

You can find the address of your local sales organisation on the ABB home page

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice.
ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB.

Copyright@ 2018 ABB - All rights reserved

